
Journal of Sound and Vibration (2002) 258(4), 741–761
doi:10.1006/jsvi.2002.5148, available online at http://www.idealibrary.com on
NOVELTY DETECTION IN ACHANGING ENVIRONMENT:
REGRESSION AND INTERPOLATION APPROACHES

K. Worden
y, H. Sohn and C. R. Farrar

Group ESA-EA, Los Alamos National Laboratories, Los Alamos U.S.A.
E-mail: k.worden@sheffield.ac.uk

(Received 13 June 2001, and in final form 4 February 2002)

The technique of novelty detection is now established as a means of performing the
lowest level of damage identification. Data are accumulated while the system or structure is
operating in normal condition and used to construct a reference model. During subsequent
operation of the system, data are compared to the reference and any significant deviations
are taken to indicate damage. This approach has potential problems if the system or
structure is embedded in a changing environment. If the reference data are only
characteristic of a limited range of the environmental parameters, measurements from
the system in an undamaged condition but from a different environmental state, may cause
the diagnostic to register novelty and thus falsely infer damage. This paper demonstrates a
potential solution to the problem via the construction of a reference set parametrized by an
environmental variable. Two approaches are considered: regression and interpolation.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The problem of damage identification has a hierarchical structure [1]. At the lowest level,
the idea is to say with confidence, whether damage has occurred or not. At the highest
level, it is required to locate and size the damage and also to estimate the residual safe life
of the system or structure. One of the more promising approaches to the damage problem
is based on pattern recognition. Data are measured from the system or structure and
converted by a process of feature extraction, into a representation where variations due to
damage are highlighted. This representation is usually of reduced dimension. Once a
feature vector is obtained, it can be processed by a classification algorithm which will
associate with it a class label or damage state. If only the lowest level of identification is
required, the class label will have only two values, normal and damaged. If a higher-level
diagnostic is needed, the class label will encode further information such as: damage type,
damage location and damage extent. In this latter case, the classification algorithm will
need to have a priori knowledge of all the classes that can occur. If the algorithm gains this
knowledge by learning from examples, features (and hence data) must be available for
each class. This is a formidable problem and requires detailed modelling of the system or
extensive experimental programmes in order to collect the requisite data.

In many cases, the most important question will simply be}is the system damaged or
not? In this restricted case, a simpler means of training the classifier is available and this is
yOn study leave from: Department of Mechanical Engineering, University of Sheffield, Mappin Street,
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the basis of the approach termed novelty detection [2–4]. The idea is to extract features
from the data that characterize only the normal condition and these are used as a template
or reference. During monitoring, data are measured, the appropriate features are extracted
and compared (in some sense) with the reference. Any significant deviations from the
reference are considered to signal novelty or damage. The major advantage of this strategy
is that the training data (which establishes the reference) is only from the undamaged
system, and this vastly reduces the modelling or data collection requirements.

The simple strategy above is only appropriate when the normal condition does not vary
with time. Suppose the reference model is constructed from normal condition data
measured around a nominal time t0: If subsequent data are measured at a time tm; where
the operational or environmental conditions have changed but are still considered to be
normal, the new data will be flagged as novel. Implying damage from novelty under these
circumstances is clearly not correct. The variation with time may be implicit or explicit.
The latter case is extremely important for engineering, as the system of interest may be
sensitive to the environmental conditions and these conditions may vary with time. A
classic example is a bridge whose measured properties vary with temperature. The changes
in measured features during a day/night cycle can be large enough to obscure any changes
due to damage.

One solution to the problem is to collect the training data over a long enough time
period to span all the possible normal conditions. This is the approach followed in
references [5,6]. The latter reference considered damage detection in a model offshore
platform where the deck mass was changing with time as a result of storing oil. This
approach is valid only if the damage produces changes in the features that are orthogonal
in some sense to the changes produced by environmental variation. A related problem is
that the enlarged feature set may cause a decrease in sensitivity (this will be illustrated
later). For ease of reference, such models will be termed large normal condition models.

A more satisfactory (and in a sense optimal) solution is to compare new data only with
reference data from the same environmental conditions. There are two possible situations:
(a) the environment is uniquely characterized by a group of measureable parameters
(temperature, humidity, etc.), (b) the environment cannot be characterized so. The current
paper is concerned only with the first (simpler) situation. The idea is to build a set of
reference models parametrized by the environmental variables; during structural
monitoring, new data are evaluated with respect to a reference model for the appropriate
conditions. The training data will be exactly the same as for the large normal condition
model; however, during monitoring, only a (potentially small) subset of the training data
will effectively be used to assess novelty. Two strategies are considered here, one based on
regression and the other based on interpolation.

The process of removing the effect of environmental variation in the observed data is
part of the larger issue of normalization. The idea is to create a damage indicator that is
invariant under changes in the structure or its environment that are not relevant for
diagnosing damage. For example if the raw data from a structure are a response time
series and the excitation is unobservable and uncontrollable, the effect of the input
amplitude on the response can be removed by standardizing the response (removing the
mean and scaling by the inverse standard deviation). This is a valid step if, for example,
the structure is known to be linear.

In order to illustrate the approach here, data will be generated synthetically from a
simple lumped-mass system.

The layout of this paper is as follows. Section 2 describes the particular novelty
detection algorithm used in this work}namely outlier analysis}and outlines how it can
be adapted to cope with environmental change. Section 3 describes the system of interest;
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data are obtained from computer simulation. Section 4 illustrates the regression approach
to the normalization process using a low-dimensional feature vector and section 5 shows
how the approach is applied in higher dimensions and also highlights some of the
problems which can occur in the latter case. Section 6 shows how an interpolation
approach can overcome problems with the regression strategy.

2. OUTLIER ANALYSIS

2.1. OUTLIERS IN UNIVARIATE DATA

A discordant observation or outlier in a data set is an observation that is surprisingly
different from the rest of the data in some sense, and therefore is believed to be generated
by a different mechanism to the other data. The discordancy of a candidate outlier is some
measure that can be compared against some corresponding objective criterion, and allows
the outlier to be judged as statistically likely or unlikely to have come from the assumed
generating model. The application to damage detection is clear; the discordancy should be
evaluated with respect to a model constructed from a normal condition of the system of
interest. The standard reference for outlier analysis is reference [7].

The case of outlier detection in univariate data is relatively straightforward in the sense
that outliers will ‘‘stick out’’ from one end or other of the data set. There are numerous
discordancy tests. One of the most common, and the one whose extension to multivariate
data will be employed later, is based on deviation statistics and given by

zz ¼ ðxz � %xxÞ=s; ð1Þ

where xz is the potential outlier and %xx and s are the mean and standard deviation of the
sample respectively. The latter two values may be calculated with or without the potential
outlier in the sample depending upon whether inclusive or exclusive measures are preferred.
This discordancy value is then compared to a threshold value and the observation
declared, or not, to be an outlier. The value of the threshold is critical; unfortunately it is
usually necessary to make some assumptions about the data in order to establish it.
Suppose the normal condition data are assumed Gaussian. In this case, there is a 95%
probability that a sample xz drawn from the same distribution will lie in the range
[�1�96; 1�96]. If a point observed during the monitoring period lies outside this range, there
is only a 5% chance that the point is a sample from the same normal condition
distribution. In practice, the reference set will not be Gaussian, however, if the deviation is
small, the assumption of Gaussianity may yield a sensible threshold.

2.2. OUTLIERS IN MULTIVARIATE DATA

A multivariate data set consisting of n observations in p variables may be represented as
n points in a p-dimensional space. It is clear that detection of outliers in multivariate data
is more difficult than the univariate case due to the potential outlier having more ‘‘room to
hide’’.

The discordancy test that is the multivariate equivalent of equation (1), is the
Mahalanobis squared distance measure given by

Dz ¼ fxzg � f %xxgð ÞT½S
�1 fxzg � f %xxgð Þ; ð2Þ

where fxzg is the potential outlier, f %xxg is the mean of the sample observations and [S] the
sample covariance matrix.



K. WORDEN ET AL.744
As with the univariate discordancy test, the mean and covariance may be inclusive or
exclusive measures. In many practical situations the candidate outlier is not known
beforehand and so the test would necessarily be conducted inclusively. In the case of
health monitoring though, the potential outlier is always known beforehand}it is the
most recently measured observation}and so it is more sensible to calculate a value for the
Mahalanobis squared distance without this observation ‘‘contaminating’’ the statistics of
the normal condition data. Whichever method is used, the Mahalanobis squared distance
of the potential outlier is checked against a threshold value, as in the univariate case, and
its status determined.

2.3. CALCULATION OF CRITICAL VALUES OF DISCORDANCY

In order to label an observation as an outlier or an inlier there needs to be some critical
value or threshold against which the discordancy value can be compared. This value is
dependent on both the number of observations in the training set, n; and the number of
dimensions of the problem being studied p:

For the work presented here, a Monte Carlo method was used to arrive at the
threshold value. The procedure for this was to construct a ( p � n) (number of dimensions
� number of observations) matrix with each element being a randomly generated
number from a zero mean and unity standard deviation Gaussian distribution Nð0; 1Þ:
The Mahalanobis squared distances were calculated for all the elements, using
equation (2) where f %xxg and [S] are inclusive statistics, and the largest value stored.
This process was repeated for at least 10 000 trials whereupon the array containing
all the largest Mahalanobis squared distances was ordered in terms of magnitude.
The critical values for 5 and 1% tests of discordancy for a p-dimensional sample
of n observations are then given by the Mahalanobis squared distances in the array
above which 5 and 1% of the trials occur. The inclusive threshold is computed
because it is far less expensive computationally, it can be converted into the exclusive
threshold by the use of a simple formula [7]. As in the univariate case described
above, there is an implicit assumption here that the reference or training set is
multivariate Gaussian.

2.4. OUTLIER ANALYSIS IN A CHANGING ENVIRONMENT

The framework above is suitable only for when the normal condition distribution
is time-invariant, i.e., the statistics f %xxg and [S] are constants. In a changing environment,
the statistics of the normal conditions will be functions of the environmental para-
meters. To simplify matters here, it will be assumed that the environment is parametrized
by a single measurable variable which will be arbitrarily called temperature T :
Thus f %xxg ¼ f %xxðTÞg and ½S
 ¼ ½SðTÞ
: Suppose that there is variation with time,
but it is slow compared to the typical time period of acquisition of a reference set.
By measuring data at various points in the environmental cycle, it will be possible to
collect a set of statistics characteristic of a set of temperatures fTi; i ¼ l; . . . ; NTg: In
order to build the parametrized reference model, a polynomial regression model in T is
fitted for each coefficient of the mean vector and covariance matrix, i.e., for the ith
coefficient of the mean,

%xxi �
XNp

j¼0

a
j
iT

j; ð3Þ
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where Np is the polynomial order, and the a
j
i are the regression coefficients. Similarly for

the covariance matrix,

Sij �
XMp

k¼0

ak
ijT

k; ð4Þ

where Mp need not equal Np:
A total of p least-squares regressions are required to model the mean, and pðp þ 1Þ=2 are

needed for the covariance as it is symmetric.
The monitoring strategy is now clear. When a new set of observations is tested for

novelty, the temperature T at the time of measurement is used to estimate the appropriate
statistics f %xxðTÞg and [SðTÞ] from the regression models, and these are used to compute the
Mahalanobis distance.

3. THE DATA FOR THE CASE STUDY

3.1. A LUMPED-MASS SYSTEM

The system selected for generation of the simulated data was a lumped-mass system with
equations of motion
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 !
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: ð5Þ

The raw data for the diagnostic was the response y1: Because there is a single input x; the
required response is also obtained as the solution of

m2 ẏ̇̇̇1;þ2cmẏ̇̇1;þðc2 þ 4kmÞ .yy1 þ 4ck ’yy1 þ 3k2y1 ¼ m .xx þ c ’xx þ 2kx: ð6Þ

Since this is a single-input single-output system, the subscript distinguishing the responses
will be dropped from this point forward.

The excitation chosen was a white Gaussian sequence with zero mean and unit variance.
Simulation was carried out using the function Isim from the MATLAB Control System
Toolbox [8]. In order to simulate the effects of damage and temperature variation on the
system, the following coefficients were prescribed: m ¼ 1; c ¼ 20ð1þ DÞ and k ¼ 104ð1�
D=2� T=200Þ: The temperature T is allowed to take values in the range [0; 100], and the
damage index D is allowed to take values [0,1]. At the reference temperature T ¼ 0 with no
damage, the system has undamped natural frequencies of 15.9 and 27.6Hz. A time step of
0�002 s was chosen for the simulation, giving an effective sampling frequency of 500Hz.
For the extreme values of the parameters, T ¼ 100; D ¼ 0 or T ¼ 0; D ¼ 1; the system
experiences a 50% reduction in stiffness. The difference is that the damage also causes an
increase in damping. The effects of temperature and damage have deliberately been chosen
to be similar in order to expose the limitations of the large normal condition model.

3.2. THE FEATURES

The raw time data are inappropriate for damage detection as the response is a random
variable and the individual values of a measured time record will always be different to any
other. In order to construct a reference model, it is necessary to convert the data to a
feature set containing time-invariant observables of the response. A popular choice is to
use Fourier transformation to convert the time data to spectra. This forces the analyst to
choose the most significant spectral lines in order to obtain feature vectors of low
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dimension. It is important that the dimension be low, as the size of the training set needed
to properly sample the probability distribution of the features grows explosively with
dimension. An alternative strategy that gives a low-dimensional representation of the
spectral content is to use an auto-regressive (AR) model. This is a model for the process,

yi ¼
XNAR

j¼1

jjyi�j þ ei: ð7Þ

The response yi at a given sampling instant ti is a weighted sum of NAR past values of the
response plus an added shock ei [9]. It is possible to show that the spectrum of y is
estimated by

SyyðoÞ ¼ s2e= 1�
XNAR

j¼1
jje

�ijoDt
��� ���2; ð8Þ

where Dt is the sampling interval and s2e is the variance of the shock sequence ei: The
accuracy of the prediction and the accuracy of the spectral estimate increases with the AR
model order until the appropriate order is reached. For feature extraction purposes, it is
useful to know the correct model order. One means of estimating the order is based on the
following observation [9]. If the correct model order for an AR process is p; any
coefficients beyond the pth in a higher order model are distributed as a Gaussian with
zero-mean and standard deviation sp ¼ 1=

ffiffiffiffiffiffiffi
Nw

p
; where Nw is the number of points in the

estimation window or record. In practice, the magnitude of the last AR coefficient jNAR
is

plotted against the model order; beyond the correct order, the coefficients will fall below
the threshold sp: The method is sometimes referred to as partial auto-correlation (PAC).
To illustrate the method, data from the system described above will be analyzed.

A response sequence of length 10 000 samples was generated for the system with T ¼ 0
and D ¼ 0; and the PAC plot was constructed as shown in Figure 1. Figure 1 also shows
Figure 1. Partial auto-correlation plot for data from system of interest. }}, T ¼ 0: D ¼ 0; – – –, T ¼ 100:
D ¼ 0; . . ., T ¼ 0: D ¼ 1:
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the corresponding plots for similar data records with T ¼ 100; D ¼ 0 and T ¼ 0; D ¼ 1;
i.e., for the two extreme conditions of the system. The analysis was carried out using
MATLAB [10] and made use of routines from the System Identification Toolbox [11].

The PAC plot shows that the appropriate AR model order for the T ¼ 0; D ¼ 0 data is
23, while for the high temperature and damaged data the right model order is 27. (Clearly,
this is an ad hoc procedure and may be subject to variation between data samples.) Figure
1 also shows that the first two coefficients are dominant, and it may be that two
dimensions suffice to illustrate some aspects of the regression technique. If the equation of
motion (6) is converted to a discrete-time representation using centred differences to
approximate the derivatives, an ARX (in terms of past y and x values) model is obtained
with order (4,2); however, this is only a guide to the necessary model order. If an AR or
MA (only lags in x present) model is required, the order will be higher in order to
compensate for the missing variables. The order will also depend on how accurate the
central difference is at the given sampling frequency.

4. ANALYSIS USING A LOW-DIMENSIONAL FEATURE SPACE

The analysis in this section assumes that the appropriate AR model order for novelty
detection is 2. The first objective here is to demonstrate the fundamental limitation of the
large normal condition model.

A large training set was generated as follows. For values of T between 0 and 100
inclusive, at intervals of DT ¼ 10; a response series containing 10 000 points was generated
from the system described in section 3 with D ¼ 0: A feature set at each temperature was
created by moving a 1000-point window through the record with an overlap of 950 points.
In each window, an AR(2) model was fitted by a simple least-squares method. This
procedure gave a set of 181 two-dimensional vectors for each of the 11 temperatures. A
total of 1991 vectors were obtained spanning the whole environmental range of the system.
Note that because the windows overlap substantially, there will be a high degree of
correlation between the feature vectors. The true measure of the size of the training set
should probably be the number of feature vectors that can be obtained from the response
when there is no overlap. Although the data here only allows 10 independent
measurements, the additional feature vectors obtained from the overlap procedure are
useful for visualisation purposes.

A testing set was created by the same procedure, except that the responses were
generated with T ¼ 0 and the damage index D running from 0 to 1 with a step size of 0�1:

Figure 2 shows a plot of the training and testing data. The training data at T ¼ 0; which
are the proper reference data for the testing set is highlighted. The figure shows that the
large training set cluster (marked by crosses) overlaps substantially with the damage
cluster (marked by points). This means that a diagnostic trained on the large set will be
insensitive to the lower levels of damage. In contrast, the T ¼ 0 component of the
reference (marked by circles) overlaps less. More importantly, because of the high variance
of the large training set, the Mahalanobis distance will grow much more slowly as the
Euclidean distance from the set increases.

To illustrate the effect further, Figure 3 shows the result of carrying out an outlier
analysis using the large training set and compares with the results of using the T ¼ 0
subset which is appropriate for this particular damage data.

The testing data in Figure 3 is for damage indices D ¼ 0–1 in steps of 0�2: The vertical
dotted lines in the figure separate the different damage regimes (each segment is of 181
points). It is immediately clear that the diagnostic trained on the full range of normal



Figure 2. Scatter plot showing distribution of data for AR(2) features. *; T ¼ 0: D ¼ 0; +, T > 0: D ¼ 0; �;

T ¼ 0: D > 0:
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conditions is less sensitive than that trained on the T ¼ 0 subset. The threshold shown as a
horizontal line is the 99�9% confidence limit for the T ¼ 0 subset. Because the subset
contains only a fraction of the points used for the large training set, the 99�9% limit for the
large set would be higher, so the situation is actually worse than the figure suggests. Even
when the appropriate training set is used for comparison, it can be seen that the sensitivity
of the diagnostic is low. This is due to the minimal nature of the feature vector. It will be
shown later that higher order AR models give higher sensitivity to damage.

The analysis above shows the clear advantage of using a reference appropriate to the
environmental conditions. The next results will illustrate the use of the regression
approach. The training data used for this example is identical to the large training set used
previously; however, this time it is partitioned according to the temperature at the time of
measurement. In all, 11 data sets are available spanning the temperature range. These data
are used to construct 11 mean vectors and 11 covariance matrices, each labelled by the
measurement temperature. The final regression model is obtained by fitting a parametric
model to each vector and matrix coefficient in turn as described in section 3. Because 11
points are available for each curve-fit, the polynomial order was chosen as 3 to avoid
overfitting.

Figure 4 shows the variation in the mean of the first AR coefficient as the temperature
varies. It is clear that a low order polynomial should be used for fitting, any higher than
cubic and the curve-fit would start to reproduce the statistical fluctuations in the data.

The next illustration shows how the regression model performs on data from the
damaged system at different temperatures. As before, response data were simulated and



Figure 3. Comparison of outlier statistics for a large training set and an appropriate reference. }}, T ¼ 0
training set; – –, Large training set.

Figure 4. The mean of the first AR coefficient in the AR(2) feature set as a function of temperature together
with the least-squares curve-fit. *; measured data; }}, cubic curve fit.
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converted into sets of feature data. Four feature sets were obtained: (a) T ¼ 20; D ¼ 0; (b)
T ¼ 20; D ¼ l; (c) T ¼ 75; D ¼ 0; (d) T ¼ 75; D ¼ 1: The significance of this simulation is
that for the first two data sets the temperature occurred in the training set, for the latter
two the regression model is interpolating between measured points. The results of the
outlier analysis using the regression model on the features above are shown in Figure 5.

The results from the regression model are very satisfactory. Both of the sets of features
from normal condition are below the threshold; both of the damage states are clearly
flagged.

The regression approach has been validated here on a low-dimensional feature set. This
leaves something to be desired as the sensitivity of the regression model to the damage is
rather low}Figure 5 shows results for extreme damage states. It is expected that using a
higher order AR model and consequently a higher-dimensional feature set is likely to
increase sensitivity. In physical terms, using a higher order model will give a better
resolved estimate of the response spectrum which is likely to be more sensitive to damage.
This is investigated in the next section.

5. ANALYSIS USING A HIGH-DIMENSIONAL FEATURE SPACE

The PAC analysis in section 3 indicated that the appropriate model order for the
response data was between 23 and 27. This means that all coefficients in a model up to this
order will contain information about the system, and will therefore contain information
about discordancy if the system response changes. The object of this section is to repeat
the regression analysis in a higher-dimensional feature space. The model order for the
following analysis will be set at 24.
Figure 5. Results of outlier analysis using regression model on data from two different temperatures: low-
dimensional features. }}, T ¼ 20; D ¼ 0; – –, T ¼ 20; D ¼ 1; –, T ¼ 75; D ¼ 0; . . ., T ¼ 75; D ¼ 1:
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Now, as the object of the exercise here is to investigate if increased sensitivity results
from higher order AR models, the first simulation will be to consider sensitivity. As in the
previous section, a large training set was generated by simulating the response at 11
temperatures over the expected range. The same moving window strategy was used to
generate features, the main difference being that an AR(24) model was fitted in each
window instead of an AR(2). Another important difference concerns the size of the
training sets. In the case of the two-dimensional feature set, 181 samples constituted an
adequate training set. This is not the case for 24 dimensions, particularly as the samples
are correlated (recall that the estimation windows for the AR coefficients overlap
substantially). For the present exercise, time records containing 100 000 points were used.
With a window length of 1000 points and an overlap of 800 points, this gave a training set
with 496 samples per temperature. Although the time histories may appear long, because
the sampling frequency is 500Hz, the acquisition time is 200 s and this is certainly short
compared to the expected time scales for environmental change. For the testing set, the
same damage states as those illustrated in Figure 3 were used.

Figure 6 shows the results of two outlier analyses. The first uses the large normal
condition model and uses training data over the whole temperature range. The second uses
only the appropriate subset corresponding to the appropriate T ¼ 0 subset.

The results are much more consistent than those from the two-dimensional features.
There are a few excursions above threshold on the data from the lowest damage state
(D ¼ 0:2) and many excursions for the next level of damage (D ¼ 0:4). Note that for the
higher-dimensional features, there is substantial overlap between the damage states and
the extended normal condition of the large training set. This renders the diagnostic
insensitive to damage.
Figure 6. Comparison of outlier statistics for a large training set and an appropriate reference. }}, T ¼ 0
training set; – –, large training set.
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Just to emphasize that the increase in sensitivity of the diagnostic is due to the increased
dimensionality of the feature vectors and not to the increased size of the training set,
Figure 7 shows the Mahalanobis distances for the two-dimensional feature vectors when
the training and testing sets are of the increased size. By comparison with Figure 6, it is
shown that the higher-dimensional features are superior.

Moving on to the regression model, a curve-fit was performed as before to the means
and covariances as a function of temperature. Figure 8 shows the outlier statistics for the
same testing sets as in Figure 5, namely: (a) T ¼ 20; D ¼ 0; (b) T ¼ 20; D ¼ 1; (c) T ¼ 75;
D ¼ 0; (d) T ¼ 75; D ¼ 1:

The results are excellent, the two damage states are well above threshold, while the two
normal condition sets are well below. In comparison with Figure 5, the separation between
the two normal conditions and the corresponding two damage conditions is more
consistent. While the T ¼ 75 results were further above threshold in Figure 5, some of the
T ¼ 20 were barely above and one point was actually flagged as normal.

It seems that the regression approach to normalization works very well. However, there
is a caveat. A serious problem can occur if the normal condition sets are inadequate for
proper training. In order to illustrate this, a training set was constructed using the
prescription for the low-dimensional feature set. For each of the 11 temperatures, 10 000
points of time data were generated and a 1000 point window was stepped through the data
with an overlap of 950 points. This gave 181 training patterns per temperature that were
highly correlated.

In this case, two testing sets were used: the first with T ¼ 20; D ¼ 0 and the second with
T ¼ 20; D ¼ 1: Figure 9 shows the result of computing the outlier statistic on the basis of
the inadequate training data.
Figure 7. Outlier statistics for two-dimensional feature set but with training set of increased size.



Figure 8. Results of outlier analysis using regression model on data from two different temperatures: high-
dimensional features. }}, T ¼ 20; D ¼ 0; – –, T ¼ 20; D ¼ 1; –, T ¼ 75; D ¼ 0; . . ., T ¼ 75; D ¼ 1:

Figure 9. Results of outlier analysis using regression model with inadequate training data. }}, T ¼ 20;
D ¼ 0; – –, T ¼ 20; D ¼ 1:
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For this example, the Mahalanobis squared distance is negative. At first this seems
rather unlikely. However, recall that the covariance matrix for the test above is built from
component-wise curve-fits. While the covariance matrices in the training set were all
symmetric and positive semi-definite by construction, the matrices recovered from the
regression models are only constrained to be symmetric. In fact, an eigenvalue analysis of
the matrix [SðT ¼ 20Þ] showed that the smallest eigenvalue was in fact negative. When
[SðTÞ] is inverted to form the distance measure in equation (2), the negative eigenvalue
becomes the largest.

In this case, the negative distances are assumed to be a result of an inadequate training
set. In a Monte Carlo simulation that generated 100 training sets of an appropriate size for
the high-dimensional feature set (496 points per set), none gave negative eigenvalues for
the covariance matrices. However, this is no guarantee that there will never be problems.
To compensate, it is possible to modify the distance measure in order to make it positive
semi-definite as follows.

First, one generates [SðTÞ] from the regression model as usual. Singular value
decomposition is then used to give the breakdown,

½S
 ¼ ½U
½s
½U
T; ð9Þ

where ½s
 ¼ diagðs1; s2; . . . ; sp) is a diagonal matrix containing the eigenvalues in
descending order of magnitude. If the first negative eigenvalue occurs in the nth element,
then define [sd 
�1 ¼ diagðs�1

1 ; s�1
2 ; . . . ; s�1

n�1; 0; . . . ; 0Þ: The approximate, but positive

semi-definite by construction, inverse to the original [S] is given by

½Sd 
�1 ¼ ½U
½sd 
�1½U
T: ð10Þ

When this approximate inverse is used to compute the discordancy for the testing data
shown in Figure 9, the results are as shown in Figure 10.

The result of using the approximate inverse is excellent. Note that the testing set
containing normal data is above threshold, this is because the training set did not
adequately sample the full normal condition at T ¼ 0; this cannot be compensated for.
However, the modified distance measure is only to be used in isolated cases where an
adequate training set still generates a covariance matrix with a negative eigenvalue. Note
that the procedure effectively eliminates the smallest eigenvalues of [S], and thus the
largest eigenvalues of ½S
�1: This means that the corrected Mahalanobis distance will
always be smaller than one which uses an unbiased estimate of the covariance matrix. The
more eigenvalues are deleted, the smaller will be the Mahalanobis distance. For the
example shown above, deletion of one or two eigenvalues still gave a sensitive diagnostic;
however, if eight eigenvalues were deleted, the Mahalanobis distance squared for the most
severely damaged case (D ¼ 1) fell below the threshold.

In order to assess the applicability of the training set, one can plot the number of
eigenvalues deleted as a function of temperature over the range of interest as in Figure 11.

The plot shows that the main problems occur at the ends of the temperature range, and
this is to be expected. In the range T ¼ 20–28, only one eigenvalue is deleted and this
would be adequately–compensated by using the approximate inverse for the covariance
matrix. In the range T ¼ 62–73, using the approximation would result in an almost
complete loss of sensitivity to the damage. The figure confirms that the training set is
inadequate.

When an eigenvalue deletion plot was constructed for the appropriately populated
training set described at the beginning of this section, there were no deletions at any
temperature.



Figure 10. Results of outlier analysis using regression model with inadequate training data: compensating
distance measure used. }}, T ¼ 20; D ¼ 0; – –, T ¼ 20; D ¼ 1:

Figure 11. Number of eigenvalue deletions as a function of temperature.
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6. AN INTERPOLATION APPROACH TO NORMALIZATION

The last section concluded that there are potential problems with the regression
approach to normalization.

The problem is: given a training set, i.e., a set of mean vectors f %xxgi and covariance
matrices [S
i; estimated for a set of measured temperatures Ti; ði ¼ 1; . . . ; NTÞ; estimate
the appropriate mean and covariance matrix for a temperature T not in the measured set.
The estimate for the covariance matrix should be symmetric and positive semi-definite.

There is a simple solution to this based on interpolation as opposed to regression.
Suppose Ti5T5Tiþ1; define the interpolant [SðTÞ] by

½SðTÞ
 ¼ ð1� aÞ½S
i þ a½S
iþ1 ð11Þ

(with a similar formula for the mean), where

a ¼ ðT � TiÞ=ðTiþ1 � TiÞ: ð12Þ

This has the desired properties that if T ¼ Ti; then ½SðTÞ
 ¼ ½S
i and similarly for T ¼
Tiþ1: Also, most importantly, the estimate is guaranteed to be positive semi-definite.
Suppose fvg is an arbitrary vector, consider the scalar

fvgT½SðTÞ
fvg ¼ ð1� aÞfvgT½S
ifvg þ afvgT½S
iþ1fvg: ð13Þ

Because ½S
i and ½S
iþ1 are positive semi-definite, and a is between zero and one, the RHS is
always greater than or equal to zero. Thus fvgT½SðTÞ
fvg50 for any fvg and so ½SðTÞ
 is
positive semi-definite.z

In order to illustrate the approach, the same training set as in section 5 was used. The
features were the AR(24) parameters estimated from the 100 000 point time records. Thus,
each covariance matrix was estimated from 496 patterns. The temperatures ranged from
T ¼ 0 to 100 with a step of DT ¼ 10:

The testing set was made up of four components as before: (a) T ¼ 20; D ¼ 0;
(b) T ¼ 20; D ¼ 1; (c) T ¼ 75; D ¼ 0; (d) T ¼ 75; D ¼ 1: Recall that T ¼ 75 was not

represented in the training set. Figure 12 shows the results of a discordancy test for
each condition. The results are as good as those from the regression model as shown
in Figure 8.

7. GENERALIZATION TO SYSTEMS WITH MORE THAN ONE
ENVIRONMENTAL PARAMETER

7.1. REGRESSION

In the regression approach, the generalization to the case with more than one
environmental parameter is simple to formulate. Suppose, for simplicity, that instead of
temperature, there are two parameters y1; and y2; the idea is to compute mean vectors and
covariance matrices in conditions spanning the range of environmental change and then fit
multinomial regression models, i.e.,

%xxi �
XNp

j¼0

XNp

k¼0

a
jk
i y

jyk and Sij �
XMp

k¼0

XMp

l¼0

akl
ij y

kyl : ð14; 15Þ
zThanks to Mike Fugate of the Pattern Recognition and Machine Learning group at LANL for pointing this
out.



Figure 12. Results of outlier analysis using interpolation model on data from two different temperatures:
high-dimensional features. }}, T ¼ 20; D ¼ 0; – –, T ¼ 20; D ¼ 1; –, T ¼ 75; D ¼ 0; . . ., T ¼ 75; D ¼ 1:
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The problem with this approach is that the number of coefficients to fix grows explosively
with the polynomial order of the model and the number of environmental parameters. A
new curse of dimensionality comes into play. Not only should there be enough training
patterns for each environmental condition to fix the normal condition distribution there,
there should be enough normal conditions to adequately sample the space spanned by the
environmental parameters.

7.2. INTERPOLATION

The generalization to more than one environmental parameter for the
interpolation approach can be a little more demanding. However, the case of two
parameters can be addressed using currently available software, so the strategy
will be outlined here.

The simplest situation to deal with is if the parameters are sampled on a two-
dimensional grid i.e., the points in the set can be labelled ði; jÞ; the values of the parameters
at the grid points will be denoted

%
y j

i

¼ ðy j
1i; y

j
2iÞ: The spacings between points at i and

(i þ 1), for example, need not be constant; however, it is assumed that the sampling is
organized so that the cells of the mesh are rectangular. Associated with each point is a
mean vector f %xxgj

i and a covariance matrix ½S
ji: Interpolation in this case is fairly
straightforward, suppose the values of the statistics are required at a new point with
environmental co-ordinates

%
y: First, it is necessary to identify which cell in the mesh

includes the new point as in Figure 13.



Figure 13. Interpolation over a rectangular cell.
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The interpolated value for [Sð
%
yÞ] is then given by Press et al. [12],

½Sð
%
yÞ
 ¼ ð1� aÞð1� bÞ½S
 j

i þ að1� bÞ½S
 j
iþ1 þ ð1� aÞb½S
 jþ1

i þ ab½S
 jþ1
iþ1 ; ð16Þ

where

a ¼ ðy1 � y j
1iÞ=ðy

j
1iþ1 � y j

1iÞ and b ¼ ðy2 � y j
2iÞ=ðy

jþ1
2i � y j

2iÞ ð17; 18Þ

By a similar argument to that in the last section, the interpolant [Sð
%
yÞ] is guaranteed

symmetric and positive semi-definite. This particular strategy generalizes straightfor-
wardly to higher dimensions as long as the statistics are sampled on a regular grid, where
in this case regular simply means that the cells of the mesh are rectilinear.

In general, it may be impossible to arrange that the samples of the statistics are obtained
on a regular grid. In two dimensions, the interpolation is still tractable; the idea is that of
Sibson’s natural neighbour interpolation method [13].

The first stage in the process is to construct the Delauny triangulation defined by the
sample points. The plane region of interest is decomposed into a contiguous set of
triangles by the algorithm described in reference [13]. Each of the triangles will have three
of the sample points as its vertices. The second part of the interpolation process is to find
which triangle the new point y ¼ ðy1; y2Þ falls inside. Once this is known, the situation is as
shown in Figure 14; without loss of generality, the vertices are labelled y1; y2 and y3:
Associated with the vertices are covariance matrix estimates: ½S
1; ½S
2 and ½S
3:

The new point y divides the triangle into three subtriangles. Each subtriangle is
associated with the vertex opposite. If the areas of the subtriangles are Ai; i ¼ 1; . . . ; 3;
and the total area of the triangle is A; the normalized areas are defined as: li ¼ Ai=A: It is
obvious that each li > 0; it also follows that l1 þ l2 þ l3 ¼ 1: The values li uniquely fix
the position of the point y within the triangle; because they also satisfy the properties given
above, they are called a barycentric co-ordinate system within the triangle. Most
importantly, they define a linear interpolant on the triangle defined by

½Sð
%
yÞ
 ¼

X3
i¼1

li½S
i: ð19Þ



Figure 14. Interpolation over a triangular cell.
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This interpolant is guaranteed to be symmetric and positive semi-definite by the same
argument as used previously.

Software to construct the Delauny triangulation and the linear interpolant is available
for the two-dimensional case [14]. For higher dimensions, commercial software is, to the
author’s knowledge, not available.

8. DISCUSSION AND CONCLUSIONS

This report discusses two possible approaches to normalization in novelty detection.
Namely, the problem of removing environmental variations as a factor in deciding if new
data are anomalous with respect to a previously measured normal condition set. The
techniques discussed here are limited to the case where the environmental parameters of
interest are measurable.

The first approach is via regression. The reference set is parametrized using the
measured environmental parameters and a polynomial regression model is fitted for each
coefficient of the relevant statistics. In this case, as basic outlier analysis is used as the
novelty detector, regression models are fitted for the components of the mean vector and
covariance matrix of the relevant features. The procedure was illustrated using features
extracted by AR modelling of a group of time-histories, and the environment variable was
a fictitious temperature parameter. It was shown that the regression approach was more
(potentially much more) sensitive to damage than the previous normalization approach
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investigated by the author, where a large training set was constructed spanning all
environmental conditions of interest. A potential problem associated with the regression
approach when used with outlier analysis is that the model estimate of the covariance
matrix at a given temperature is not guaranteed positive definite. This problem only
appears to occur if the training data do not adequately sample the normal condition
distribution of interest. A means of circumventing the problem is demonstrated together
with a graphical method of assessing the suitability of the training set. The approach does
not store the statistics from the training data, but stores the coefficients of the regression
model.

Next, an interpolation method is demonstrated which does not suffer from the positive
definiteness problem associated with regression. In contrast to the regression approach,
the method stores the database of statistics spanning the environmental range of interest
and interpolates within it as required. The interpolation shown here is linear.

For data with a sparse set of normal conditions, the regression approach may be
attractive as the least-squares curve-fitting has a smoothing effect on the estimates. If
adequate training data is available there is not expected to be too much difference between
the two approaches. Both methods are shown to be effective on data from a system
characterized by a single environmental parameter. For more than one parameter, both
methods will suffer from the ‘‘curse of dimensionality’’. The number of normal condition
states required in order to adequately sample the range of environmental conditions will
grow quickly with dimension. This requirement is distinct from the need to adequately
sample the probability distribution of the features for a given environmental state. In
procedural terms, the regression model is more easily generalized to higher numbers of
environmental parameters, particularly if the training data is based on a set of
environmentally varying samples that are irregularly distributed in the parameter space.

One issue which has been ignored here concerns measurement noise. In the case
discussed here, the features are derived quantities}the AR parameters are estimated from
measured excitation and response data. It is known that the presence of Gaussian noise on
the measurements will induce a scatter on the AR parameter estimates, the extent of the
scatter increasing with the r.m.s. of the original noise process. This may cause problems
with the regression approach akin to those from inadequate training sets. If the noise is
not Gaussian, the AR parameter estimates may be biased. If the noise is stationary, this
may not be a problem. However, if the noise is non-stationary, the features will move in
the feature space in a manner which might be interpreted as the result of damage.
However, this caveat is equally valid applied to novelty detection problems with no
environmental variation. The question of noise will be addressed in the next phase of this
work; it is the intention of the authors to carry out an experimental study.
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